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MOTIVATION

* Law enforcement audio recordings such as interviews, telephone
intercepts and surveillance recordings often contain speech from more
than one speaker.

* Identifying speakers of interest within these multi-speaker recordings
first involves editing to extract the speech of a single speaker.

* This editing process, in which extraneous noises and other speakers
are removed, can either be performed manually or assisted using
speaker diarisation software.

* However, if a large number of such files need to be analyzed in a
short period of time, it may not be practical to involve a human in the
loop.
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TELEPHONE INTERCEPTS

Telephone conversations may be
recorded as

*  Mono — both speakers on one
channel

* Stereo — each speaker on one
channel v

*  Dual Mono - stereo, but two
speakers each channel

In order to perform speaker
recognition you need to separate
out speakers either by manually
cutting up the files or by using
automatic speaker diarization
tools.
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SURVEILLANCE RECORDINGS

Did my target
come into the
room, and when?




REAL-CASE MOTIVATION

Netherlands (Dutch Police) *

The police have four years of
intercept recordings.

These are all two-wire (mono)
recordings with two or more
speakers per file.

There are approx. 1000 files.

The police have a known suspect,
and they want to find which calls
he may be present in.

*Thanks David van der Vloed, NFI
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THE ALTERNATIVES — MANUAL SPLITTING OR
SPEAKER DIARISATION

We estimate that manually diarizing an audio file takes at least 4-5
times the duration of the file. (e.g. a one hour file could take four hours
or more to diarize even by an experienced practitioner).

The other option is to use automatic diarization software:
* In certain cases they can perform well blindly
* In other cases they are helped by human intervention.

* With diarization you don’t know which of the files might be your
target speaker
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MANUAL DIARIZATION
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SPEAKER DIARIZATION

(BLIND OR ASSISTED)
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APPROACH

*A simple but effective approach in which short overlapping segments
of the multi-speaker recording are extracted and modeled within an
i-vector framework.

*The i-vector approach converts a recording into a fixed length,
low-dimensional representation of the speaker’s voice.

*The i-vectors for each overlapping segment (e.g. 10s segments, with
5s overlap) are compared with the i-vector for the target speaker file.

*The match scores obtained across all overlapping segments are first
smoothed to reduce the effect of outliers, and then an average of the
three maximum scoring segments provides a match score for the file.
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ALGORITHM
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THE BLOCK-BASED MULTI-SPEAKER RECOGNITION
APPROACH

* MFCC Features are extracted from the audio

* Voice Activity Detection (VAD) is applied to the audio and frames are
marked as speech and non-speech.

* Features normalised using cepstral mean subtraction (CMS) and cepstral
mean and variance normalisation (CMVN) and Delta-Deltas.

* The features are split into 10 seconds chunks with a 5 second overlap.
* In each block, any non-speech frames are then removed.

* Each block is modelled using i-vectors and compared to each target
speaker’s i-vector to obtain scores.

* The score trajectories for each target speaker are smoothed using a
three frame running average.

* The average of the top 3 scores for each target speaker is chosen as the
match score.
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SIMULATED SURVEILLANCE RECORDINGS
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BLOCKED COMPARISON RESULTS
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SIMULATED SURVEILLANCE RECORDINGS
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EXPERIMENTS CONTROLLED CONDITIONS

*We tested our approach with controlled laboratory data as well as
real telephone intercept data. We used a multi-speaker modified

version of the VOCALISE speaker recognition software (Alexander et
al, 2014).

°For our experiments with laboratory data, we used interview and

intercept recordings in same- and cross-channel conditions from the
DyVIS database (Nolan et al, 2009).

*For ‘single target’ cross-channel comparisons, we used 51 files
containing two speakers from the intercept task and compared them
with 59 single speaker files from DyVIS Task 3 (report and report
recall).
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RESULTS DYVIS
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MULTI-SPEAKER DYVIS RESULTS ZOOPLOT
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Error (%)

DYVIS — MULTI VS DIRECT COMPARISON
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AUTOMATICALLY DIARISED AUDIO
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EXPERIMENTS REAL INTERCEPT DATA

°For uncontrolled real telephone intercept data, we have worked with
a subset of the FRITS database (van der Vioed et al, 2014).

*All tests were conducted by and at the Netherlands Forensic Institute
(NFI). This subset consisted of 11 multi-speaker conversations (mostly
two, and in some cases, more speakers) and a set of 32 target
speakers.

* Both channels were combined together by NFI for these experiments.
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NFI-FRITS DATABASE

Data comes from real police intercepts.

Data is anonymized by editing.

Availability is very limited due to the sensitivity of the data.
Speaker ID is ‘by proxy’.

People tasked to judge which file belonged to which speaker were given
telephone number, and the possibility to listen through every recording from
that number.

General numbers
604 speakers in 4188 recordings, 165 hours of speech

177 female / 427 male speakers
1068 female / 3120 male recordings

Phone conversations from January 2008 to March 2013
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REAL CASE DATA RESULTS (FRITS)
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REAL CASE DATA RESULTS (FRITS)

*For each multi-speaker recording the majority of corresponding target
speakers were identified at rank one or two of the match score list

(76.1%).

*Conversely, for each target, a matching multi-speaker file containing
that speaker was identified at rank one or two, 80% percent of the
time
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CONCLUSIONS

*We observe that the total duration of speech and the relative speaker
mix for each target in a multi-speaker file are important for accurate
recognition.

*Despite these challenges, this approach shows promise for
automatically processing large volumes of real-world multi-speaker
files.

*Automatic diarization or manual segmentation will provide higher
accuracy results.

*The chunked approach provides an effective means for detection of
speakers of interest from multi-speaker recordings without requiring
manual segmentation or automatic diarization
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